A fast iterative thresholding algorithm for wavelet-regularized deconvolution
نویسندگان
چکیده
We present an iterative deconvolution algorithm that minimizes a functional with a non-quadratic waveletdomain regularization term. Our approach is to introduce subband-dependent parameters into the bound optimization framework of Daubechies et al.; it is sufficiently general to cover arbitrary choices of wavelet bases (non-orthonormal or redundant). The resulting procedure alternates between the following two steps: 1. a wavelet-domain Landweber iteration with subband-dependent step-sizes; 2. a denoising operation with subband-dependent thresholding functions. The subband-dependent parameters allow for a substantial convergence acceleration compared to the existing optimization method. Numerical experiments demonstrate a potential speed increase of more than one order of magnitude. This makes our “fast thresholded Landweber algorithm” a viable alternative for the deconvolution of large data sets. In particular, we present one of the first applications of wavelet-regularized deconvolution to 3D fluorescence microscopy.
منابع مشابه
Solar hard X-ray imaging by means of Compressed Sensing and Finite Isotropic Wavelet Transform
Aims. This paper shows that compressed sensing realized by means of regularized deconvolution and the Finite Isotropic Wavelet Transform is effective and reliable in hard X-ray solar imaging. Methods. The method utilizes the Finite Isotropic Wavelet Transform with Meyer function as the mother wavelet. Further, compressed sensing is realized by optimizing a sparsity-promoting regularized objecti...
متن کاملEvolving Geophysics Through Innovation
Continuity along reflectors in seismic images is used via Curvelet representation to stabilize the convolution operator inversion. The Curvelet transform is a new multiscale transform that provides sparse representations for images that comprise smooth objects separated by piece-wise smooth discontinuities (e.g. seismic images). Our iterative Curvelet-regularized deconvolution algorithm combine...
متن کاملConvergence of an inertial proximal method for l1-regularized least-squares
A fast, low-complexity, algorithm for solving the `1-regularized least-squares problem is devised and analyzed. Our algorithm, which we call the Inertial Iterative Soft-Thresholding Algorithm (I-ISTA), incorporates inertia into a forward-backward proximal splitting framework. We show that I-ISTA has a linear rate of convergence with a smaller asymptotic error constant than the well-known Iterat...
متن کاملSparseness - constrained seismic deconvolution with Curvelets
Continuity along reflectors in seismic images is used via Curvelet representation to stabilize the convolution operator inversion. The Curvelet transform is a new multiscale transform that provides sparse representations for images that comprise smooth objects separated by piece-wise smooth discontinuities (e.g. seismic images). Our iterative Curvelet-regularized deconvolution algorithm combine...
متن کاملStein block thresholding for wavelet-based image deconvolution
Abstract: In this paper, we propose a fast image deconvolution algorithm that combines adaptive block thresholding and Vaguelet-Wavelet Decomposition. The approach consists in first denoising the observed image using a wavelet-domain Stein block thresholding, and then inverting the convolution operator in the Fourier domain. Our main theoretical result investigates the minimax rates over Besov ...
متن کامل